HYPER-CONTRADICTIONS

Graham PRIEST

‘... if we take seriously both true and false
and neither true nor false separately, what
is to prevent our taking them seriously
conjunctively? As in “‘It is both true and
false and neither true nor false that snow is
white’’. That way, in the end, lies mad-
ness.’

Bob Meyer (%

1. Contradictions

There is growing evidence that the logical paradoxes (and perhaps
some other kinds of assertions) are both true and false. () Orthodox
semantics, therefore, need to be modified to allow for this possibility.
A natural way of doing this is as follows. (?)

Let Sy = {1,.0}, the set of orthodox truth values.

We now want to allow for the possibility that a sentence may have
more than one of these values. Thus the value of a sentence may be
any member of

S1 = P(So) — {9}

We remove the @ since a sentence must have some value at least.
Now let Ag, Vo, b be the orthodox truth functions on Sy (thus™ |1 = 0
1 Ap0 = 0 etc.). What are the corresponding truth functors on S; ? The
obvious thing to do is to define them point-wise. Thus if x, yeS;

) xA\yy = {Z| 3X1 €X 3y1 €Y Z2=X1 Ao Y1}
i) xViy = {z| 3x,ex Iy ey z=X, Vo ¥4}
i) “hx = {z|Ix;exz =" X}

(© [1978], p. 19.
(*) See G. Priest [1984].
(®» See G. Priest [1979]
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Thus, for example, if 6 has the value true and y has the value both
true and false, 6 Ay will be true, since both ¢ and 0 are true, but it will
also be false, since at least one conjunct is false. Hence 0 Ay will be
both true and false. I will call these functors LP functors.

Should we allow sentences to take a value from Sy US; ? We could,
but this is unnecessary. For let o be the map such that o(x) = {x}.
Then

i) o is an injection of Sy into S,
i) o bx) = Lo®x)
iii) o(xVoy) = o(x)V10(y)
iv) o (xAgy) = a(x)A10(y)

Thus S, is isomorphic to a subset of S;.
< SOa /\Os VO,—-I0> =<0 [SO]a Al |\(--)-[SO]’Vl I\OI[SO]a——‘l Fo [SO] >

Thus we do not need to add S, to S, explicitly.

Having defined the truth values in this way, we can now define the
semantic consequence relation in the usual way. Let v; be any map
from the propositional parameters of a (propositional) language to S;
which is extended to a map of all formulas of the language by the truth
functions with subscript i. (Fori = 1 or 2.)

Let Do = {1}, D, = {{1} {1,0}}

These are the sets of designated truth values of Sy and S, respectively.
Any sentence which is at least true is designated. We can now define:
2= Aiff all vi, 3BeXv(B)¢D; or v(A)eD; (i =1or?2)

It is easy enough to show(®) that

)k 2K but
i) ¢ Aiff o5 A.

2. Hypercontradictions
But now a natural question is posed: if there are sentences which

are so twisted as to take impossible values, such as both true and
false, might there not be sentences which are so contradictory as to

(® See G. Priest [1979] Part III.
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take impossible values such as both true and false ({1,0}) and true
only ({1})? Indeed, there are, as a simple application of the extended
liar paradox shows.

Consider the sentence: this sentence is false only. It is either true or
false. If it is true, it is either true and false ({1,0}) or true only ({1}).
But since it is true, it is false only ({0}). Hence, it takes impossible
values. If, on the other hand, it is false, then it is not false only ({0}).
Hence, it is true, which we have already seen to lead to impossible
values. (4).

Does the possibility of these hyper-contradictions materially affect
the logic we need to use? To answer this question we need to make
the suggestion more precise. The obvious way to do this is to extend
S, in a way analogous to the way in which we extended S, in the
previous section. Of course, if we do this there is no reason why we
should stop there. Similar considerations will force us to iterate the
construction indefinitely. Let us therefore generalize the construction
thus:

Sos Ao» Vo, o are as before:

Su+1 = P(S,) — {@} for all new ()

XAn+1Y = {2]3x;ex 3y ey 2 = XA Y4}

XVos1y = {Z|3X15X Iy1eyZ = X1 Vay1}

Theix = {z]|Ixyexz =" x4}
As before let 0(x) = {x}. Then o is an isomorphism between S, and
o[Sa]-

In virtue of this isomorphism, and to ease notation, we can simply
identify S, with 6[S,], Aa with A, [0[S,] etc. To finish things off we
now need to collect up.

LetS =Y S,
A=Y, A
V= Va
=4 h

(% See G. Priest [1979] § V.3.
(®) If we allow a sentence to take two values which are mutually exclusive, there
seems to be no reason why we should not allow them to take an arbitrary number.
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So much for the truth values. Which of them are in the set of
designated values D ? The obvious thing is to let a value be designated
just if it contains some truth, i.e. it contains 1 at some depth of
membership. To make this precise, define a map n:So — S; thus:

n(0) = {0}
n() = {1}

and extend it to a map 1: S — S; by the recursion clause:
if xeSn41 ME = U{N(2)|zex}

(Note that n respects the embedding o. n({x}) = n(x).)

For all xeS, n(x)SS,, and we let xeD iff 1en(x).

(In the case at hand, D is simply S — {0}. However when we
generalize the construction in § 3 to allow for the empty set, matters
are not that simple.)

Logical consequence can now be defined in the usual way. If v is an
evaluation whose range is S, respecting A, V and " I: ’

SE=Aiffall v, 3BeX v(B)¢D, or v(A)eD

What is the relation =7 The answer is that = = 5 as we will now see.
It is obvious that =Sk since $;&S. We need only prove the
converse. This follows from the following central fact.

Lemma
1) is a homomorphism.

Proof
To show this we need to prove that

) "M =k
i) n(x) Vn(y) = nx Vy)
iif) N(xAy) = n(x)An(y)
For i), note first that ~1~ x = x. (The proof is a simple one by
induction on the construction.) i) is itself now proved by an induction
on the construction. The case for S, is trivial. Suppose it holds for S,
and that xeS, 4 ¢:
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) = TTU{ny)|yex} (Def. of 1)
= "1{z|Iyexzen(y)}
= {Tkz| Iyexzen(y)} (Def. of 7))
= {z|yex "lzen(y)} (Double negation)
= {z| Jyexze I(y)} (Def. of 7))
= {z|Iyexzen(Tly)} (Induction hypothesis)
= {z| Jye xzen(y)} (Def. of 7))
= U{n(y)|ye &}
=N( &) (Def. of 1)

ii) is also proved by an induction on the construction. The case for S,
is trivial. Suppose it holds for S, and that x,yeS, ;1:

nxVvy) = U{n(z)|zexVvy} (Def. of 1)
' = U{n(x1 Vyi)[x1€X, yi1€Y) (Def. of V)
= U{n(xy) Yn(y)|x£X, y1ey} (Induction hypothesis)

= {z| 3x,&x Iy ey zen(xy) Vn(yD}
= {z, Vz,| IX,ex Jy,eyz, en(X,) and z,en(y,)} (Def. of V)
= {z4| X1exz1En(x)} V {z2| Iy ey z,em(y)}  (Def. of V)
= U{n(xo) [x1ex} V U{n(ys) |yiey}
=nx) Vn(y) _ , (def. of n)

For iii) the proof is similar.
That =2 now follows simply. For suppose SH-A. Let v(B)eD for
all BeX and v(A) ¢ D. By the lemma, nv is an evaluation with range S;.
Furthermore x D iff 1en(x) iff n(x)eD,. Hence = H; A.

Thus, hyper-contradictions make no difference: the first contradic-
tion {1,0} of S; changes the consequence relation (but not the set of
logical truths). Subsequent contradictions have no effect.

3. Ringing the Changes

This main result extends naturally to a variety of modifications of

the basic semantical construction.
i) We can allow the empty set to enter at every stage of the

construction. Thus, we-simply let
Sn+1 = P(Sn)'

All the definitions and results of the previous section go through in



242 G. PRIEST

exactly the same way. In particular = (so defined) is still identical to
k5 (so defined). This logic is not, what it might at first be thought to
be, first degree entailment. (%) Rather the point-wise definitions of the
truth functors give the extension of the LP functors according to the
rule: gap-in, gap-out.(”) As far as I know, this logic has not been
characterized proof-theoretically.

ii) A second way the construction could be altered is by symmetri-
sing the notion of logical consequence. Thus, we define a domain, D’,
of anti-designated values. The obvious way to do this is to define
x ¢ D’ iff 0e (x). Semantic consequence is now taken to require both
preservation of designation forward and preservation of antidesigna-
tion backwards. This clearly has no effect on |5 . 5 does change but,
as the proof shows, = = |5 still.

iii) S is closed under finite subsets, i.e. if X is finite and X & S, x&S.
Thus, that S may take any finite number of incompatible values is
accomodated by the construction. It may well be thought natural to
allow sentences to take infinite numbers of incompatible values. An
obvious way of allowing for this is to iterate the construction into the
transfinite in the obvious way, collecting up a limit ordinals. We thus
obtain a set S, closed under arbitrary subsets. Moreover, if we define
a consequence relation, kz, over this set of values, it is straightforward
enough to extend the result of the previous section to show that
F=kK.

The hypercontradiction construction can clearly be applied in a
wide variety of cases. The above results indicate that it is, in general,
not a destabilising construction. Finally, the construction shows that
the notion of hypercontradictions is a quite coherent and intelligible
one, Bob Meyer notwithstanding. (5)

University of Western Australia Graham PRIEST
Dept. of Philosophy
NEDLANDS - Western Australia

(%) In virtue of the four-valued semantics of J. M. Dunn [1976].
(") Essentially as in T. Smiley [1960]
(® See the quotation with which this paper starts.
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